
Git Workflow

The different types of branches we may use are:

main

production releases

develop

AKA integration branch

Release branches (release-*)

for finalizing a major/minor release, branched from develop

Hotfix branches (hotfix-*)

for applying patches, branched from main (or release-* for older releases)

Feature branches (feature-*)

for developing features or wild speculation, branched from develop

Feature branches
Created for feature development that may require several or more commits to produce a working tree. May make occasional merges from

develop to keep it up to date. If it will be separate for an extended period of time, create a feature-branch-readme.txt in the top level

directory dictating the reason for the branch.

May branch off from: develop

Must merge back into: develop

Release branches
Release branches are created when the develop branch is at a stable point and release specific changes need to be made, such as

bumping version numbers, etc. At that point, develop should be branched and the changes made before ultimately merging it into

main and tagging the release.

There should only be one active release branch at a time.

Initial Release should be tagged as x-alpha.1 or x-beta.1 . Until the current release is wrapped up, merged into main .

Development of the next release should take place on develop .

When develop reaches another state of stability for release, another release branch is be created.

May branch off from: develop

1 $ git checkout -b myfeature develop

2

1 $ git checkout develop

2 $ git merge --no-ff myfeature

3 $ git branch -d myfeature

4 $ git push origin develop

5

1 $ git checkout -b release-1.2 develop

2 $./bump-version.sh 1.2

3 $ git commit -a -m "Bumped version number to 1.2"

4

Bug fixes made on a release branch may be merged back into develop continuously if needed, though ultimately they will be merged in

when the release is finalized.

Must merge back into: develop and main

Hotfix branches
Patches that need to be made to the most recent production release are applied to a hotfix branch off main . For older releases, hotfixes

branch off a release-* branch (Explained below).

May branch off from: main

Must merge back into: develop and main

Merge into develop only if there is no current release branch, otherwise, merge into release branch instead.

Finally, delete. $ git branch -d hotfix-1.2.1

Hotfix branches (old release)
If main has moved on a point release (1.0, 1.1, 2.0, etc) and a hotfix must be applied to a older version (e.g 1.x):

create a branch (e.g. hotfix-1.1.1), based on release-1.x

fix the bug and merge hotfix-1.1.1 back into release-1.x

Do this for other older major releases as necessary

The release branch effectively becomes a main branch for a past version.

1 $ git checkout main

2 $ git merge --no-ff release-1.2

3 $ git tag v1.2

4

5 $ git checkout develop

6 $ git merge --no-ff release-1.2

7

1 $ git checkout -b hotfix-1.2.1 main

2 $./bump-version.sh 1.2.1

3 $ git commit -a -m "Bumped version number to 1.2.1"

4

5 $ git commit -m "Fixed severe production problem"

6

1 $ git checkout main

2 $ git merge --no-ff hotfix-1.2.1

3 $ git tag 1.2.1

4

